Printed Page	•
	Roll. No:
MOID	A INSTITUTE OF ENGINEERING AND TECHNOLOGY CREATER NOIDA
NOIDA	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)
	B.Tech
	SEM: III - THEORY EXAMINATION (2023 - 2024)
	Subject: Logic Design and Computer Architecture
Time: 3 H	
General Inst	
	that you have received the question paper with the correct course, code, branch etc. tion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice
_	ACQ's) & Subjective type questions.
	marks for each question are indicated on right -hand side of each question.
	your answers with neat sketches wherever necessary.
4. Assume su	uitable data if necessary.
	y, write the answers in sequential order.
	should be left blank. Any written material after a blank sheet will not be
evaluated/ch	вескеа.
SECTION-	A 20
1. Attempt a	ll parts:-
•	ne operation of insertion in stack is called (CO1)
(a)	POP
(b)	PUSH
(c)	Evaluation Create
(d)	None
1-b. Th	ne ALU makes use of to store the intermediate results. (CO1)
(a)	Accumulator
(b)	Program Counter
(c)	Stack Pointer
(d)	Address Register
1-c. IE	EE stands for (CO2)
(a)	Instantaneous Electrical Engineering
(b)	Institute of Emerging Electrical Engineers
(c)	Institute of Emerging Electronic Engineers
(d)	Institute of Electrical and Electronics engineers
1-d. Ca	arry lookahead adder uses the concepts of (CO2)
(a)	Inverting the inputs
(b)	Complementing the outputs
(c)	Generating and propagating carries

	(d)	None of the mentioned	
1-e.	Н	ow many address bits are required to represent a 32 K memory? (CO3)	1
	(a)	10 bits	
	(b)	12 bits	
	(c)	14 bits	
	(d)	15 bits	
1-f.	T	wo important fields of an instruction are &(CO3)	1
	(a)	Opcode	
	(b)	Operand	
	(c)	mode	
	(d)	Both 1 & 2	
1-g.	T	ime for replacing the block from memory, is referred as (CO4)	1
	(a)	miss penalty	
	(b)	Penalty	
	(c)	Hit	
	(d)	Miss	
1-h.		Iaximum time required before a dynamic RAM must be refreshed is	1
	(a)	2 ms	
	(b)	4 ms	
	(c)	6 ms	
	(d)	8 ms	
1-i.		he transmission on the asynchronous bus is also called as mode ansmission. (CO5)	1
	(a)	Pulse	
	(b)	Switch	
	(c)	Signal	
	(d)	None of the mentioned	
1-j.	\mathbf{N}	IAR stands forCO5	1
	(a)	Main address register	
	(b)	Memory address register	
	(c)	Main accessible register	
	(d)	Memory accessible register	
2. Att	empt a	all parts:-	
2.a.	W	That are the functions of ALU and Control Unit? (CO1)	2
2.b.	D	refine the concept of Half adder. (CO2)	2
2.c.	W	That is meant by instruction? (CO3)	2
2.d.	W	That is SRAM and DRAM? (CO4)	2

2.e.	Explain different types of peripheral devices?(CO5)	2
SECT	ION-B	30
3. Ans	wer any <u>five</u> of the following:-	
3-a.	Draw the diagram of bus system that uses three state buffers and 2:4 decoder instead of multiplexers and Explain how it works. (CO1)	6
3-b.	Show the block diagram of the hardware that implements the following register transfer statement: P: R2 < R1. (CO1)	6
3-c.	Sketch the flow diagram of division algorithm with suitable example. (CO2)	6
3-d.	Explain IEEE standard for Floating Point Numbers.(C02)	6
3.e.	Explain the concept of hardwired with the help of suitable example. (CO3)	6
3.f.	List the difference between following - a) RAM and ROM b) Static RAM and Dynamic RAM. (CO4)	6
3.g.	Write the difference between serial and parallel communication.(CO5)	6
SECT	ION-C	50
4. Ans	wer any <u>one</u> of the following:-	
4-a.	Explain push and pop operations of Register stack and Memory stack. (CO1)	10
4-b.	What is register? Explain General Register organization with control word. (CO1)	10
5. Ans	wer any <u>one</u> of the following:-	
5-a.	Explain the working of 4 bit Carry Look Ahead Adder with help of example. (CO2)	10
5-b.	Calculate 5 X 6 with the help of signed magnitude algorithm. (CO2)	10
6. Ans	wer any <u>one</u> of the following:-	
6-a.	Differentiate between programming and microprogramming using suitable examples. (CO3)	10
6-b.	What is pipelining? Explain the difference between arithmetic and instruction pipeline. (CO3)	10
7. Ans	wer any <u>one</u> of the following:-	
7-a.	What is Memory hierarchy? Explain the purpose to construct such memory hierarchy in digital computers. (CO4)	10
7-b.	Define set associative cache mapping using suitable example. (CO4)	10
8. Ans	wer any <u>one</u> of the following:-	
8-a.	Draw the block diagram of DMA controller. (CO5)	10
8-h	What is Interrupt? Explain the different types of Interrupts (CO5)	10